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Nironlarda Kalsiyum-Bagimh Klor” Kanah Alkimlarimin Farmakolojik Ozellikleri ve Fizyolojik
Rolleri

OZET

Néronal hiicre membranlan ¢esitli voltaj ve ligand kapih iyon kanallanina sahiptir. Bu iyon kanallan-
mmn tipi ve 16kasyonu bir néronun clektriksel davranigini belirler. Sodyum, potasyum, klor ve kalsiyum ka-
nallari membranda bulunan csas iyon kanallandir. Bu kanallardan bazilart kalsiyum-bagumh olarak aktive
olur ki bunlar; kalsiyum-bagimli klor, kalsiyum-bagimh potasyum, kalsiyumn-bagiml secici olmayan katyon
kanallandir. Bu derlemede, ndronal kalsiyum-bagimli klor kanallarinin bazi farmakolojik ve biyofiziksel

dzellikleri ile fizyolojik rolleri tarugildi.

Anahtar Kelimeler: Kalsiyum-bagimli klor kanallari, klor kanah inhibitdrleri, néron

SUMMARY

Neuronal cell membranes contain several ligand and voltage-gated ion channels. The type and
location of these ion channels determines the clectrical behaviour of a neurone. Sodium, potassium, chloride
and calcium channels arec among the main ion channels that present in cell membranes. Some of these
channels are also activated by calcium; the calcium-activated chloride, calcium-activated potassium and
calcium-activated non-selective cation channels are among the main Ca“—dependem ion channels of cell
membrancs. In this review, we discuss some of the pharmacological, biophysical properties and possible
physiological roles of calcium-activated chloride channels in neurons.

Key words: Calcium-activated chloride channels, chloride channel inhibitors, neurone.

Increases in intracellular Ca **, ([Ca®];), either by
entry of Ca** from the extracellular space or its
release from intracellular stores can activale Ca®*-
activated conductances in the cell membrane.
These conductances are Ca*-activated chloride,
potassium, and non-selective cation conductances,
which under voltage clamp recording conditions
gencrate their respective currents (IC1(Ca), IK(Ca)
ICAN). Ca**-activated conductances can be used as
physiological indicators of increases in [Ca™];
close to the cell membrane. Whole cell 1CI(Ca)
and ICAN have proved (o be particularly useful in
studying Ca®  rcgulation in cultured DRG
neurones (1) and in this paper we aim (o review

their pharmacological properties and possible
physiological roles.

Studies using conventional electrophysiological
methods (sharp electrodes), whole-cell and single
channel patch clamp techniques and ion flux
measurements have indicated that many cell types
express chloride channels not only in their cell
membrane but also on the membranes of organelles
including mitochondria and ER. Studies of their
properties indicate that several chloride channel
types in cell membranes are activated by Ca** (2).

The first report of IC|(Ca) came from studies on
amphibian tissues, salamander retina (3) and
Xenopus laevis oocytes (4). Since then, ICI(Ca) has
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been identified in other cell types such as secretary
cells. skeletal. cardiac and smooth muscles, and
neurones (3. 6). Neurones which express Ca**-
activated chloride channels include mouse spinal
neurones (7). rat DRG neurones (5. 8). chick DRG
neurones (9), rabbit  pelvic parasympathetic
ganglion neurones (10). quail cultured sensory and
parasympathetic neurones (1n).

Biophysical

Ca**-Dependence and  Some

Properties of I CI{Ca)

There are ample evidences to suggest that an
increase in [Ca™']j is an essential factor for
activation of IC|(Ca) In every type of tissue.
Under current clamp conditions, the Ca**-activated
chloride conductance can be identified as an action
potential after- depolarization (3, 12) following a
mixed action potential which has a component of
Ca™ entry (13). Repeated activation of action
potentials or bursts of action potential induced
larger after-depolarizations than those induced by a
single action potential in the same neuroné ).
However, Ca* entry can also activate IK(Ca) and
action potentials may be followed by inital
hyperpolarization and then slow development of
the after depolarization. The dominance of one of
these two opposing Ca**-dependent conductances
depends on the relative degree of activation and
differences in the driving force for the two ions.
Pharmacological isolation can be helpful and
Ig(Ca) can be blocked by charybdotoxin (14) . By
using whole cell configuration of patch clamp
technique (15) and blocking K* and Na" currents,
including IK(Ca). With 2 combination of Cs in the
patch pipette solution and TEA and TTX in the
external recording medium, the ICl(Ca) can be
observed in isolation as a slowly decaying inward
1ail current, following voltage activated ICa (15).

Simultaneous  patch  clamp  recording and
measurement of [Ca’']j levels with fluorescence
dyes has provided further convincing evidence in
favour of a prerequisition of [Ca**]j for activation

of ICi(Ca) (16).

The IC|(Ca) currents can be completely blocked by
increasing cells Ca?* buffering capacity by using 10
mM EGTA in the patch pipette solution.

Ca®* release from intracellular stores can also
activate IC1(Ca). Experiments with patch clamp
recording have shown that several Ca’* releasing
agents acling on agonist receplors release Ca®*
from intracellular Ca’* stores, and that increased
Jevels of intracellular Ca’* can activate ICI(Ca)-
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a well known intracellular Ca®*-
releasing agent and caffeine-induced Ca’* release
and subsequent activation of ICl(Ca) s 2
widespread and a well studied phenomenon found

in bullfrog sympathetic neuroncs (17). culwred rat
DRG ncurones (12), and in chick DRG neuron¢

9).

Caffeine is

The other well known intracellular releasing agent
[-1,4,5-P3 has also been found to activate ICI(Ca),

but only in some cell types such as oocytes (19) and

smooth muscle (20).
Recently, novel second messengers such as cADPR

(21), ryanodine (22) and caged dih)drospllingosinc
(1) has been found (o release Ca®" from
intracellular stores and activate Iaca)-

Ton selectivity of Icica

Permeability to anions and cations is an important
criteria for determining individual membrane
conductance. Identification of chloride conductance
can easily be done by changing extracellular
chloride concentration and comparing the values
for Eq calculated from the Nernst cquation. By
changing extracellular chloride ions for relatively
more permeant or impermeant jons the ion
selectivity of Ca**-activated chloride channels can
be studied. When chloride was replaced 1n
extracellular solutions with glutamate, isothionate,
aspartate or sucrose (impermeant ions or
molecules) (23-25) the amplitude of [C)(Ca) Was
increased at hyperpolarized potentials as EC] was
shifted to more positive potentials. Furthermore,
the use of relatively impermeant cations such as
choline and NMDG" in place of Na® in the
external solution did not effect the reversal
potential of IC|Ca) (25). On the other hand
replacing external chloride with more permeant
thiocyanate shifts the reversal potential of ICl(Ca)
and EC] to more negative potentials as predicted
from the Nernst equation (26). The permeability of
Ca**-activated chloride channels to small anions

has the following sequence: SCN>I >NO3 >Br >

CI'>F and is consistent for several preparations
including lachrymal gland cells (27) rabbit ear
artery cells (28) and Ascaris muscle ( 29).

Single Channel Studies

It has been shown that unitary conductance for
ICI(Ca) in most preparations is low, and there is
rapid rundown of channel activity following the
removal of the patch from a cell. There have only
been a limited number of single channel studies on
IC1(Ca) and very few in neurones. Interestingly,
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cultured Xenopus spinal neuroncs €xpress a large
300pS and intermediate 50-60 pS conductance
channel (30) however these unitary conductance
values are unusual. In cultured endocrine cells
the unitary conductance is 2-5 pS (31). In rat
lachrymal gland cells, noise analysis with whole
cell recording predicts a unitary conductance of 1-
2 pS at -60 mV (32). In Xenopus oocytes the
single channel conductance is 3 pS measured from
cell attached patches (33).

Pharmacology of IC](Ca)

Inhibition of membrane currents by
pharmacological agents is an important property
which can be used to provide identification and
evidence for a particular ion channel
Pharmacological tools can also be used to
determine the physiological role of a particular
membrane conductance. Chloride channels are
ubiquitously distributed and there are reports of as
many as 75 chloride channel subtypes with
different biophysical properties (34). Although all
aspects are not known yet, there are several
important  physiological ~and  pathological
conditions such as electrolyte absorption and
secretion, diarrhoea (35) and cystic fibrosis (36)
involve chloride channel modulation.
Unfortunately, high affinity, and selective
pharmacological antagonists for chloride channels
are yet to be developed. Most of the available
chloride channel blockers not only suffer from a
low degree of selectivity but also affect cation
conductances. However, niflumic acid, in
micromolar concentrations has been found to be a
potent and selective inhibitor of IC|(Ca) in

different cells (26, 37, 38).

Niflumic acid and flufenamic acid have been
shown to be potent inhibitors of IC|(Ca) in
Xenopus oocytes (39). In cultured DRG neurones,
10 UM niflumic acid blocked IC](Ca) tail currents
by 49%, and the amplitude of IC|(Ca) inward
currents activated by flash photolysis of DM-
nitrophen were inhibited by 69% (26). The effects
of another widely used chloride channel blocker,
NPPB varics from tissue to tissue. It has been
found o block IC)(Ca) in Xenopus oocytes in a
voltage dependent manner, producing greater
inhibition at more depolarized potentials (40).
This may also be the case in cultured rat DRG
neurones where current duration is decreased more
than current amplitude (12). Recently, chlorotoxin
a peptide toxin from scorpion venom (41) and the
polyamine spider toxins, argiotoxin-636 (42) have
been found to block IC|(Ca).
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Since ICI(Ca) can be activated by release of Ca®
from internal Ca?* stores, the amplitude of ICI(Ca)

may be reduced by the agents that deplete stores.
Caffeine (43) and ryanodine (9) in addition (0
activating currents by releasing Ca®* can also when
repeatedly applicd reduce ICI(Ca) as stores hecome
depleted or Ca®* relcase channels are blocked.

The other well-known pharmacological agents,
that acts as CI' channel blockers in non-neuronal
preparations can also be used to block neuronal C]'
channels. These include “the loop diuretic”
furosemide and mefenamic acid, both acts on
smooth muscle cells and neuronal cells (44, 45),
the anti-helmintic drug suramin, which acts on
Xenopus oocytes  (46). A-9-C (antracene-9-
carboxylic acid) can potently block Icyca channels
in mouse sympathetic ganglion cells (47). The
stilbene derivatives, DIDS 4, 4’-
diisothiocyanostilbene-2, 2’-disulfonic acid) and
STITS (4-acetamido-4’-isothiocyanostilbene-2-
2'disulphonic acid) are mostly used in smooth
muscle cells to block Ieycsy channels (37). The
other chloride channel blockers include IAA-94 (6,
7-dichloro-2-cyclopentyl-2,  3-dihydro-2-2methyl-
1-oxo-1 H-index-5 yl(oxy) acetic acid) (48) and
DPC (3’, 5-dichlorodiphenylamine-2-carboxylate)
(49) are also potential candidates of I¢yca) channel
blockers to be used in neuronal preparations.

Physiological Roles of Ca®*-activated Chloride
Channels

The calcium-activated chloride channels play
important roles in a variety of physiological
process including osmoregulation, salt secretion
and absorption, and neurotransmission. The
physiological roles of calcium-activated chloride
channels in neurones are not clear as their roles in
other cell types, such as smooth muscle cells.
Activation of calcium-activated chloride channels
can result in membrane depolarisation if the
chloride equilibrium potentials more positive than
resting membrane potential (50). Activation of
Icicy) following Ca®* entry via voltage-gated Ca®*
channels can induce after-depolarisation following
an action potential (5) or change action potential
duration by altering Ca**-influx (51). These effects
are closely related to the intracellular Ca®*
homeostasis mechanisms of cells and location of
the ion channels in the cell membrane. In secretary
cells, leyca) alongside with I,y play important
roles in (luid secretion (52). As CI" and monovalent
cations leaves the cell water follows them and this
determines the physicochemical characteristics of
fluid secreted.
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On the other hand, activation of Igcy
conductances may lead to hyperpolarisations of
membrane depending on CI™ equilibrium potential
(23). Activation of ligand-gated CI' channcls in
brain and spinal cord by glycine or GABA usually
produces inhibitory postsynaptic potential, because
in these neurones the CI' equilibrium potential is
close to or cven more negative than resting
membrane potential. Therefore, applications of
agonists like glycine and GABA to this neurones
causes either stabilization or hyperpolarisation of
the membrane potential. Consequently, the
opening of Icycay in these neurones will result in
reduced excitability.

CONCLUSIONS

Icycsy has been identified in a wide variety of
neuronal cells as well as IN cardiac myocytes,
smooth muscle cells including those vascular and
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